ABSTRACTThe fine particles are considered a significant pollution problem. The wet electrostatic precipitators (ESPs) have advantages of efficient collection of the fine particles with lower pressure drop and eliminating reentrainment. The wetting properties of the collector surfaces have significantly important effect on wet ESPs’ stable and secure operation. The modified rigid collector (MRC) was modified by coating specific vinyl ester resin composites and loose glass fiber cloth over the conventional carbon steel in a certain way. The rigid collector surfaces before and after modification had been characterized by scanning electron microscopy (SEM) and interface tensiometer. The effect of operating temperatures on the wetting properties of the rigid collector surfaces before and after modification was investigated. The temperature range was 40~90 °C, and the wetting properties contained liquid holdup, surface flow rate, film rate, average film thickness, and critical saturation time. The modified rigid collector surface exhibited excellent wetting properties at the operating temperatures. The fine particles collection performance compared among the MRC, the conventional rigid collector (CRC), and the flexible collector (FC) in the wet ESPs was investigated. The effects of the applied voltage, the water film, corona power, and the specific collecting area on the fine particles collection were evaluated. The modified rigid collector provided high fine particles collection effect with lower energy and water consumption.Implications: To improve the submicron particles collection efficiency and decrease energy and water consumption, the formation of uniform water film over the collector surfaces has been widely studied. The modified rigid collector was modified by coating specific vinyl ester resin composites and loose glass fiber cloth (ERGF) over the conventional carbon steel (CCS) in a certain way. The modified rigid collector surface exhibited excellent wetting properties. The wet ESPs by the modified rigid collector exhibited significantly higher particles collection efficiency than by the conventional rigid collector.
Read full abstract