Cadmium (Cd) being potentially toxic heavy metal, has become increasingly serious to vineyard soil and grapes in recent years. Soil type is one of the main factors affecting the absorption of Cd in grapes. To investigate the stabilization characteristics and form changes of Cd in different types of vineyard soils, a 90-days incubation experiment was conducted after exogenous Cd addition to 12 vineyard soils from typical vineyards in China. The inhibition of exogenous Cd on grape seedlings was determined based on the pit-pot incubation experiment (200 kg soil per pot). The results demonstrate that Cd concentration in all the sampling sites did not exceed the national screening values (GB15618-2018; i.e., 0.3 mg/kg when pH was lower than 7.5, 0.6 mg/kg when pH was higher than 7.5);. Cd in Fluvo-aquic soil 2, Red soils1, 2, 3 and Grey-Cinnamon soil is dominated by acid-soluble fraction, but was mainly in residual fraction in the remain soils. Throughout the aging process, proportion of the acid-soluble fraction increased and then decreased, while proportion of the residual fraction decreased and then increased, after exogenous Cd was added. The mobility coefficients of Cd in Fluvo-aquic soil 2 and Red soil 1, 2 increased 2.5, 3 and 2 folds, after exogenous Cd addition, respectively. Compared with CK (control), the correlation between total Cd content and its different fractions was relatively weak in the Cdl (low concentration) and Cdh (high concentration) groups. Poor Cd stabilization and strong inhibition of seedling growth rate were observed in Brown soil 1, black soil, red soil 1 and cinnamomic soil. Fluvo-aquic soil 2, 3 and Brown soil 2 showed good Cd stability and small inhibition effect on grape seedlings. These results show that Cd stability in soils and inhibition rate of grape seedlings by Cd are strongly influenced by soil type.