In the current study, the antioxidant activity of traditional homemade fruit vinegars (HMV) was estimated by measuring the rate of homogeneous redox reaction with 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+) using cyclic voltammetry. The antioxidant capacity of six HMV produced using traditional methods and the physicochemical characterization were measured in different vinegar production steps throughout a double spontaneous fermentation process, i.e., without any addition of yeasts or acetic acid bacteria. Their antioxidant capacity was compared with seven fruit commercial vinegars (ComV). Furthermore, the antioxidant capacity was independently measured with the TEAC (Trolox equivalent antioxidant capacity) assay, aiming at correlating with the electrochemical experimental data. Obtained results from both methods, the electrochemical and TEAC assays, interestingly indicated that all HMV have at least 10 times higher antioxidant activity than ComV. Furthermore, the large range of values for antioxidant capacity in samples of commercial vinegars from apples attested the importance of the raw material quality and technological procedures. The positive correlation between total phenolic content and antioxidant capacity measured by the two type of assays indicated that rose hip homemade vinegar (HMV5) has the highest antioxidant capacity. In contrast, the lowest levels of phenolic compounds and antioxidant capacity were found in apple and persimmon homemade vinegars (HMV1 and HMV6, respectively) which indicated that the type of fruit is crucial towards the production of high-quality vinegars. In this way, the use of traditional processes for the production of fruit vinegars proved to be very promising in terms of producing differentiated vinegars and, concomitantly, reaching high levels of health-promoting antioxidant capacities.
Read full abstract