Several frameworks have been proposed for delivering interactive, panoramic, camera-captured, six-degrees-of-freedom video content. However, it remains unclear which framework will meet all requirements the best. In this work, we focus on a Steered Mixture of Experts (SMoE) for 4D planar light fields, which is a kernel-based representation. For SMoE to be viable in interactive light-field experiences, real-time view synthesis is crucial yet unsolved. This paper presents two key contributions: a mathematical derivation of a view-specific, intrinsically 2D model from the original 4D light field model and a GPU graphics pipeline that synthesizes these viewpoints in real time. Configuring the proposed GPU implementation for high accuracy, a frequency of 180 to 290 Hz at a resolution of 2048×2048 pixels on an NVIDIA RTX 2080Ti is achieved. Compared to NVIDIA’s instant-ngp Neural Radiance Fields (NeRFs) with the default configuration, our light field rendering technique is 42 to 597 times faster. Additionally, allowing near-imperceptible artifacts in the reconstruction process can further increase speed by 40%. A first-order Taylor approximation causes imperfect views with peak signal-to-noise ratio (PSNR) scores between 45 dB and 63 dB compared to the reference implementation. In conclusion, we present an efficient algorithm for synthesizing 2D views at arbitrary viewpoints from 4D planar light-field SMoE models, enabling real-time, interactive, and high-quality light-field rendering within the SMoE framework.
Read full abstract