Abstract

ABSTRACTThe combination of virtual reality (VR) and virtual globes – VR globes – enables users to not only view virtual scenes in an immersive manner at any location on Earth but also directly interact with multi-scale spatial data using natural behaviors. It is an important direction for the future development of 3D GIS and geovisualization. However, current VR navigation are primarily based on small real spaces. For virtual globes, which are 3D multi-scale globe environment, the realization of VR navigation in the multi-scale virtual globe space within a limited real space is the first problem that needs to be addressed. A multi-scale VR navigation method that consists of two algorithms is proposed in this study. The first algorithm maps the real space to the virtual globe space and connects the VR user with the VR viewpoint. The second algorithm is an octree structure-based viewpoint correction algorithm that is proposed to correct the location of the moving VR viewpoint in real time. The proposed method is validated by experimentation. The experimental results indicate that the proposed method enables a VR user to interactively view the 3D multi-scale globe environment and lays a foundation for human–computer interaction in VR globes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call