Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.
Read full abstract