Abstract

Estimating tailbeat frequency (TBF) is a crucial component of fish swimming kinematics and performance, particularly because it provides information about energetics and behavioral responses to environmental cues. The most commonly used technique for TBF estimation is based on accelerometers. This paper proposes a novel approach using bioimpedance technology. This is the first time bioimpedance has been measured in a freely moving animal. This was made possible by implanting a flexible electrode in the back muscle of seabasses and having them in a swimming tunnel. The experiment first demonstrates that it is possible to measure bioimpedance in an immersed fish despite the high conductivity of seawater. An agreement analysis was then performed to compare a video-based reference measurement of TBF with the newly proposed approach. Several bioimpedance settings, such as the configuration and the extracted electrical parameters, were considered. Data analysis highlights that a 4-point setup for modulus impedance measurement at frequencies over 10 kHz provides the best agreement (r > 0.98 and CCC > 0.97) with the video-based approach. These results attest to the significant benefits of integrating bioimpedance sensors in biologgers, especially considering the complementary parameters that can be extracted from bioimpedance measurements, such as length, weight, condition index, and fat content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.