Since the beginning of its large-scale production in the early 20th century, plastics have remained an important material in widespread use throughout modern society. Nevertheless, despite possessing many benefits, plastics are resistant to degradation and instead accumulate in the ocean and terrestrial sediments, thereby potentially affecting marine and terrestrial ecosystems. Plastics release CO2 throughout their entire lifecycle; during the extraction of materials used in their production, through plastic–carbon leaching in the marine and terrestrial environment, and during their different end-of-life scenarios, which include recycling, landfill, and incineration. Here, we use the University of Victoria earth system climate model to quantity the effects on atmospheric CO2 and the ocean carbon cycle by using upper-bound estimates of carbon emissions from marine plastic–carbon leaching or land-based incineration. Despite the suggestions of some, our results indicate that it has only a very minor influence and an insignificant effect on the earth's global climate system. This holds even if plastic contamination increases well beyond current levels. On the other hand, carbon emissions associated with plastic production and incineration have a greater impact on climate while still dwarfed by emissions associated with the combustion of fossil fuels (coal, oil, and natural gas) and other anthropogenic sources. Our results have important policy implications for ongoing United Nations Environment Programme Intergovernmental Negotiating Committee on Plastic Pollution negotiations.