1. Receptive-field properties of antidromically identified efferent neurons within the representation of vibrissae and sinus hairs above the mouth were examined in secondary somatosensory cortex (S-2) of fully awake adult rabbits. Efferent neurons studied included callosal neurons (CC neurons, n = 88), ipsilateral corticocortical neurons (C-IC neurons, n = 51) that project to primary somatosensory cortex (S-1), and corticofugal neurons of layer 5 (CF-5 neurons, n = 63) and layer 6 (CF-6 neurons, n = 42) that project to and/or beyond the thalamus. Appropriate collision tests demonstrated that substantial numbers of corticocortical efferent neurons (21 of 113 tested) project an axon to both the corpus callosum and to ipsilateral S-1. 2. Suspected interneurons (SINs, n = 62) were also studied. These neurons were not activated antidromically from any stimulus site but did respond synaptically to electrical stimulation of the ventrobasal (VB) thalamus with a burst of three or more spikes at frequencies of 600 to greater than 900 Hz. Most of these neurons also responded synaptically to stimulation of S-1 and the corpus callosum. The action potentials of these neurons were much shorter (mean, 0.49 ms) than those of efferent neurons (mean, 1.01 ms). 3. CF-5 neurons differed from CC, C-IC, and CF-6 neurons in their spontaneous firing rates, axonal properties, and receptive-field properties. Whereas CF-5 neurons had a mean spontaneous firing rate of 5.7 spikes/s, CC, C-IC, and CF-6 neurons all had mean values of less than 1/s. Axonal conduction velocities of CF-5 neurons were much higher (mean, 11.90 m/s) than either CC (mean, 2.63 m/s), C-IC (mean, 0.86 m/s), or CF-6 (mean, 1.73 m/s) neurons. A decrease in antidromic latency (the "supernormal" period), which was dependent on prior impulse activity, was seen in most CC, C-IC, and CF-6 neurons but was minimal or absent in CF-5 neurons of comparable conduction velocity. Although all CF-5 neurons responded to peripheral sensory stimulation, many CC (52%), C-IC (49%), and CF-6 (55%) neurons did not. CC and CF-6 neurons that did not respond to sensory stimulation had significantly lower axonal conduction velocities and spontaneous firing rates than those that responded to such stimulation. Whereas no CC, C-IC, or CF-6 neuron responded synaptically to callosal stimulation, 43% of CF-5 neurons (and 78% of SINs) did so respond. Similar differences in synaptic responsivity to stimulation of S-1 were seen in these populations.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract