The non-smooth nonlinear energy sink (NSNES) is used to suppress the vibration of the rotor-blade system. Firstly, the structure and working principle of the NSNES for rotor-blade system are introduced. Then, the dynamics model of the rotor-blade-NSNES system is established by Lagrangian method. And then, numerical simulations are applied to evaluate the vibration suppression ability of the NSNES on rotor and blade. The results show that the suppression rates of NSNES on the rotor and the blade can reach 81% and 74% in steady state resonance under given parameters, respectively; and for transient vibration of blade, a 1.85 times dissipating speed is obtained in rotor-blade system with NSNES than that without NSNES. In particular, NSNES has better vibration suppression capability than linear dynamic vibration absorber (LDVA) when both have the same vibration absorption mass.
Read full abstract