Variable frequency drives (VFDs) are widely used in industry as an efficient means to control the rotational speed of AC motors by varying the supply frequency to the motor. VFD signatures can be detected in vibration signals in the form of sidebands (modulations) induced on tonal components (carrier frequencies). These sidebands are spaced at twice the “pseudo line” VFD frequency, as the magnetic forces in the motor have two peaks per current cycle. VFD-related signatures are generally less susceptible to interference from other mechanical sources, making them particularly useful for deriving speed variation information and obtaining a “pseudo” tachometer from the motor’s synchronous speed. This tachometer can then be employed to accurately estimate the speed profile and to facilitate order tracking in mechanical systems for vibration analysis purposes. This paper presents a signal processing technique designed to extract a pseudo tachometer from the VFD signature found in a vibration signal. The algorithm was tested on publicly available vibration data from a test rig featuring a two-stage gearbox with seeded bearing faults operating under variable-speed conditions with no load, i.e., with minimal slip between the induction motor’s synchronous and actual speed. The results clearly demonstrate the feasibility of using VFD signatures both to extract an accurate speed profile (root mean square error, RMSE of less than 2.5%) and to effectively perform order tracking, leading to the identification of bearing faults. This approach offers an accurate and reliable tool for the analysis of vibration in mechanical systems driven by AC motors with VFDs. However, it is important to note that some inaccuracies may occur at higher motor slip levels under heavy or variable loads due to the mismatch between the synchronous and actual speeds. Slip-induced variations can further distort tracked order frequencies, compromising the accuracy of vibration analysis for gear mesh and bearing defects. These issues will need to be addressed in future research.
Read full abstract