Marine pipeline vibration condition monitoring is a critical and challenging issue, on account of the complex marine environment, while powering the required monitoring sensors remains problematic. This study introduces a vibration sensor based on a ball triboelectric nanogenerator (B-TENG) for marine pipelines condition monitoring. The B-TENG consists of an acrylic cube, polyester rope, aluminum electrodes, and PTFE ball, which converts vibration signals into electrical signals without the need for an external energy supply. The experimental results show that B-TENG can accurately monitor the frequency, amplitude, and direction of vibration in the range of 1-5 Hz with a small error of 0.67%, 4.4%, and 5%, and an accuracy of 0.1 Hz, 0.97 V/mm, and 1.5°, respectively. The hermetically sealed B-TENG can monitor vibration in underwater environments. Therefore, the B-TENG can be used as a cost-effective, self-powered, highly accurate vibration sensor for marine pipeline monitoring.