Vestibular evoked myogenic potential (VEMP) testing is increasingly utilized in pediatric vestibular evaluations due to its diagnostic capability to identify otolith dysfunction and feasibility of testing. However, there is evidence demonstrating that the high-intensity stimulation level required to elicit a reliable VEMP response causes acoustic trauma in adults. Despite utility of VEMP testing in children, similar findings are unknown. It is hypothesized that increased sound exposure may exist in children because differences in ear-canal volume (ECV) compared with adults, and the effect of stimulus parameters (e.g., signal duration and intensity) will alter exposure levels delivered to a child's ear. The objectives of this study are to (1) measure peak to peak equivalent sound pressure levels (peSPL) in children with normal hearing (CNH) and young adults with normal hearing (ANH) using high-intensity VEMP stimuli, (2) determine the effect of ECV on peSPL and calculate a safe exposure level for VEMP, and (3) assess whether cochlear changes exist after VEMP exposure. This was a 2-phase approach. Fifteen CNH and 12 ANH participated in phase I. Equivalent ECV was measured. In 1 ear, peSPL was recorded for 5 seconds at 105 to 125 dB SPL, in 5-dB increments for 500- and 750-Hz tone bursts. Recorded peSPL values (accounting for stimulus duration) were then used to calculate safe sound energy exposure values for VEMP testing using the 132-dB recommended energy allowance from the 2003 European Union Guidelines. Fifteen CNH and 10 ANH received cervical and ocular VEMP testing in 1 ear in phase II. Subjects completed tympanometry, pre- and postaudiometric threshold testing, distortion product otoacoustic emissions, and questionnaire addressing subjective otologic symptoms to study the effect of VEMP exposure on cochlear function. (1) In response to high-intensity stimulation levels (e.g., 125 dB SPL), CNH had significantly higher peSPL measurements and smaller ECVs compared with ANH. (2) A significant linear relationship between equivalent ECV (as measured by diagnostic tympanometry) and peSPL exists and has an effect on total sound energy exposure level; based on data from phase I, 120 dB SPL was determined to be an acoustically safe stimulation level for testing in children. (3) Using calculated safe stimulation level for VEMP testing, there were no significant effect of VEMP exposure on cochlear function (as measured by audiometric thresholds, distortion product otoacoustic emission amplitude levels, or subjective symptoms) in CNH and ANH. peSPL sound recordings in children's ears are significantly higher (~3 dB) than that in adults in response to high-intensity VEMP stimuli that are commonly practiced. Equivalent ECV contributes to peSPL delivered to the ear during VEMP testing and should be considered to determine safe acoustic VEMP stimulus parameters; children with smaller ECVs are at risk for unsafe sound exposure during routine VEMP testing, and stimuli should not exceed 120 dB SPL. Using 120 dB SPL stimulus level for children during VEMP testing yields no change to cochlear function and reliable VEMP responses.
Read full abstract