The membrane potential plays a significant role in various cellular processes while interacting with membrane active agents. So far, all the investigations of the interaction of nanoparticles (NPs) with lipid vesicles have been performed in the absence of membrane potential. In this study, the anionic magnetite NP-induced poration along with deformation of cell-mimetic giant unilamellar vesicles (GUVs) has been studied in the presence of various membrane potentials. Lipids 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and channel forming protein gramicidin A (GrA) are used to synthesize the DOPG/DOPC/GrA-GUVs. The static and dynamic nature of GUVs is investigated using phase contrast fluorescent microscopy. The presence of GrA in the membrane decreases the leakage constant of the encapsulating fluorescent probe (calcein) in the absence of membrane potential. With the increase of negative membrane potential, the leakage shifts from a single exponential to two exponential functions, obtaining two leakage constants. The leakage became faster at the initial stage, and at the final stage, it became slower with the increase in negative membrane potential. Both the fraction of poration and deformation increase with the increase of negative membrane potential. These results suggested that the membrane potential enhances the NP-induced poration along with the deformation of DOPG/DOPC/GrA-GUVs. The increase of the binding constant in the NPs with membrane potential is one of the important factors for increasing membrane permeation and vesicle deformation.
Read full abstract