A light and electron microscopic study of GABA-immunoreactive neurons and profiles in the ventroanterior-ventrolateral and ventromedial nuclei of rat dorsal thalamus was conducted using antiserum raised against GABA. Less than 1% of the neurons in these motor-related nuclei exhibited GABA immunoreactivity, confirming previous reports that these nuclei are largely devoid of interneurons. Immunoreactive neurons in the ventral anterior-ventral lateral complex and ventromedial nucleus were bipolar or multipolar in shape, and tended to be smaller than non-immunoreactive neurons. GABA immunoreactivity in the neuropil consisted of labeled axon terminals and myelinated and unmyelinated axons, and was lower in the ventral anterior-ventral lateral complex and ventromedial nucleus than in neighboring thalamic nuclei. The density of neuropil immunolabeling was slightly higher in ventral anterior-ventral lateral complex than in ventromedial nucleus. GABA-immunoreactive axon terminals, collectively termed MP boutons for their medium size and pleomorphic vesicles (and corresponding to “F” profiles of some previous studies of thalamic ultrastructure), formed symmetric synapses and puncta adhaerentia contacts predominantly with large and medium-diameter (i.e. proximal) non-immunoreactive dendrites. Approximately 12 and 18% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, were GABA-immuno-positive. Many of these immunoreactive profiles probably arose from GABAergic neurons in the thalamic reticular nucleus, substantia nigra pars reticulata and entopeduncular nucleus. Two types of non-immuno-reactive axon terminals were distinguished based on differences in morphology and synaptic termination sites. Boutons with small ovoid profiles and round vesicles that formed prominent asymmetric synapses onto small-diameter dendrites were observed. Mitochondria were rarely observed within these boutons, which arose from thin unmyelinated axons. These boutons composed approximately 82 and 74% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, and were considered to arise predominantly from neurons in the cerebral cortex. In contrast, boutons with large terminals that contained round or pleomorphic vesicles and formed multiple asymmetric synapses predominantly with large-diameter dendrites were also observed. Puncta adhaerentia contacts were also common. Mitochondria were numerous within large boutons with round vesicles, which arose from myelinated axons. Many of the large boutons were likely to have originated from neurons in the cerebellar nuclei. Approximately 6% of the boutons in the ventral anterior-ventral lateral complex and 8% in ventromedial nucleus were of the large type. Finally, consistent with the paucity of GABA-immuno-reactive neurons in the ventral anterior-ventral lateral complex and ventromedial nucleus, there was a virtual absence of vesicle-containing dendrites and dendrodendritic synapses in the neuropil of these nuclei. The results of this investigation demonstrate that intrinsically mediated GABAergic mechanisms (i.e. those emanating from interneurons) are essentially absent in the ventroanterior-ventrolateral and ventromedial thalamic nuclei in rats. Rather, the GABAergic circuitry in these nuclei is almost exclusively extrinsic in origin.
Read full abstract