Studies on the behavior of copepods require both an appropriate experimental design and the means to perform objectively verifiable numerical analysis. Despite the growing number of publications on copepod behavior, it has been difficult to compare these studies. In this study, we studied two species of copepods, Eurytemora affinis and Pseudodiaptomus annandalei, and employed recently developed scaling and non-scaling methodology to investigate the effects of density and volume on the swimming behavior of individual organisms in still water. We also compared the results of two- and three-dimensional projections of the swimming tracks. A combination of scale-dependent and scale-independent analysis was found to characterize a number of behavioral observations very effectively. We discovered that (i) density has no effect except to increase the time spent in the swimming state of “breaking”, (ii) smaller volumes resulted in more complex trajectories, and larger volumes, like density, increased the time spent in the swimming state “breaking”, and (iii) three-dimensional projections gave a more accurate estimation of speed and the time spent cruising. When only a vertical 2D projection was used, “cruising” could be confused with “sinking”. These results indicate that both experimental conditions and the selection of 2D or 3D projection have important implications regarding the study of copepod behavior. The development of standardized procedures with which to compare the observations made in different studies is an issue of particular urgency.
Read full abstract