AbstractMethane (CH4) is the second most abundant greenhouse gas and affects the Earth's radiative balance. In some regions, the methane burden and budget are still not well understood due to the lack of in situ observations, especially vertical profile observations. Here, we present the first high‐resolution aircraft‐based tropospheric vertical profiles of CH4 across the Indian subcontinent. Observations show significant variability, with the largest variability seen in the Indo‐Gangetic Plain (IGP) during post‐monsoon (September). The IGP also shows the highest concentrations and a peak in the boundary layer. By contrast, observations over western India show lower variability, especially during the Asian Summer Monsoon (ASM) (July). During ASM, when CH4 emissions peak, the vertical updraft of CH4 and other tracers is observed, leading to a peak between 4 and 5 km. During winter, the peak occurs in the boundary layer, and a decrease with altitude is observed. Model simulations slightly overestimate CH4 at the surface during some seasons but underestimate it at higher altitudes during all seasons. Integrated over the observed column, model simulations slightly underpredict CH4 (0.5%–3.1%) during all seasons. Calculations made using the observed CO/CH4 enhancement ratios show that in addition to anthropogenic fossil fuel emissions, other sources, such as rice cultivation and wetlands, need to be considered to reproduce the observed CH4 concentrations.
Read full abstract