AbstractWe examined the interannual variation in Neocalanus copepod biomass in the Oyashio waters in spring and summer from 1972 to 1999. In the mid‐1970s, mesozooplankton biomass in spring was high; however, it decreased significantly in the late 1970s. The timing of the decrease in mesozooplankton biomass corresponded to the 1976/77 climatic regime shift. The biomass of N. flemingeri, which dominated the Neocalanus community, was roughly constant from 1980 to 1999. Although species‐level estimates of Neocalanus biomass were not available for the 1970s, a previous study reported that Neocalanus copepods were the predominant mesozooplankton in the Oyashio waters in spring during the 1970s. Neocalanus copepods dominated the mesozooplankton community throughout the 1970s, and their biomass decreased in the late 1970s. Springtime net community production, an index of new production, also decreased in the late 1970s. We suggest that the reduction in new production negatively affected Neocalanus food availability, resulting decreased copepod biomass. New production may have been limited by a combination of subsurface iron supplies, increased vertical density gradient, and reduced vertical water mixing in winter, which resulted in diminished iron entrainment in winter. In summer, mesozooplankton biomass significantly decreased and increased synchronously with the 1976/77 and 1988/89 climatic regime shifts. The biomass of N. plumchrus, which dominated the Neocalanus community, was low in the 1980s and increased in the early 1990s. The biomass of the second‐most dominant copepod, N. cristatus, also increased in the early 1990s. Neocalanus copepods were reported to be a dominant component of the mesozooplankton community in the 1970s; Neocalanus biomass was high in the mid‐1970s and decreased in the late 1970s. Japanese sardine (Sardinops melanostictus), an important predator of Neocalanus copepods, exhibited interannual variation in standing stock that was inversely related to mesozooplankton biomass. At their peak in 1984, sardines consumed 32–138% of the daily Neocalanus production during summer. Therefore, predation pressure on Neocalanus by Japanese sardine is likely to affect interannual variation in mesozooplankton biomass during the summer.