AbstractComprehensive computer simulations are currently the most efficient and cheap methods in designing and optimisation of semiconductor device structures. Seemingly they should be as exact as possible, but in practice it is well known that the most exact approaches are also the most involved and the most time-consuming ones and need powerful computers. In some cases, cheaper somewhat simplified modelling simulations are sufficiently accurate. Therefore, an appropriate modelling approach should be chosen taking into account a compromise between our needs and our possibilities.Modelling of operation and designing of structures of vertical-cavity surface-emitting diode lasers (VCSELs) requires appropriate mathematical description of physical processes crucial for devices operation, i.e., various optical, electrical, thermal, recombination and sometimes also mechanical phenomena taking place within their volumes. Equally important are mutual interactions between above individual processes, usually strongly non-linear and creating a real network of various inter-relations.Chain is as strong as its weakest link. Analogously, model is as exact as its less exact part. Therefore it is useless to improve exactness of its more accurate parts and not to care about less exact ones. All model parts should exhibit similar accuracy. In any individual case, a reasonable compromise should be reached between high modelling fidelity and its practical convenience depending on a main modelling goal, importance and urgency of expected results, available equipment and also financial possibilities. In the present paper, some simplifications used in VCSEL modelling are discussed and their impact on exactness of VCSEL designing is analysed.
Read full abstract