We give a classification of all equivelar polyhedral maps on the torus. In particular, we classify all triangulations and quadrangulations of the torus admitting a vertex transitive automorphism group. These are precisely the ones which are quotients of the regular tessellations {3,6}, {6,3} or {4,4} by a pure translation group. An explicit formula for the number of combinatorial types of equivelar maps (polyhedral and non-polyhedral) with n vertices is obtained in terms of arithmetic functions in elementary number theory, such as the number of integer divisors of n . The asymptotic behaviour for n → ∞ is also discussed, and an example is given for n such that the number of distinct equivelar triangulations of the torus with n vertices is larger than n itself. The numbers of regular and chiral maps are determined separately, as well as the ones for all other kinds of symmetry. Furthermore, arithmetic properties of the integers of type p 2 + p q + q 2 (or p 2 + q 2 , resp.) can be interpreted and visualized by the hierarchy of covering maps between regular and chiral equivelar maps or type {3,6} (or {4,4}, resp.).
Read full abstract