When measuring surface deformation, because the overlap of point clouds before and after deformation is small and the accuracy of the initial value of point cloud registration cannot be guaranteed, traditional point cloud registration methods cannot be applied. In order to solve this problem, a complete solution is proposed, first, by fixing at least three cones to the target. Then, through cone vertices, initial values of the transformation matrix can be calculated. On the basis of this, the point cloud registration can be performed accurately through the iterative closest point (ICP) algorithm using the neighboring point clouds of cone vertices. To improve the automation of this solution, an accurate and automatic point cloud registration method based on biological vision is proposed. First, the three-dimensional (3D) coordinates of cone vertices are obtained through multi-view observation, feature detection, data fusion, and shape fitting. In shape fitting, a closed-form solution of cone vertices is derived on the basis of the quadratic form. Second, a random strategy is designed to calculate the initial values of the transformation matrix between two point clouds. Then, combined with ICP, point cloud registration is realized automatically and precisely. The simulation results showed that, when the intensity of Gaussian noise ranged from 0 to 1 mr (where mr denotes the average mesh resolution of the models), the rotation and translation errors of point cloud registration were less than 0.1° and 1 mr, respectively. Lastly, a camera-projector system to dynamically measure the surface deformation during ablation tests in an arc-heated wind tunnel was developed, and the experimental results showed that the measuring precision for surface deformation exceeded 0.05 mm when surface deformation was smaller than 4 mm.
Read full abstract