Abstract
Consider a convex hull generated by a homogeneous Poisson point process in a cone in the plane. In the present paper the central limit theorem is proved for the joint probability distribution of the number of vertices and the area of a convex hull in a cone bounded by the disk of radius T (the center of the disk is at the cone vertex), for T→∞. From the results of the present paper the previously known results of Groeneboom (1988) and Cabo and Groeneboom (1994) are followed, in which the central limit theorem was proved for the number of vertices and the area of the convex hull in a square by approximating the binomial point process by a homogeneous Poisson point process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.