We develop the general theory for the construction of Extended Topological Quantum Field Theories (ETQFTs) associated with the Costantino-Geer-Patureau quantum invariants of closed 3-manifolds. In order to do so, we introduce relative modular categories, a class of ribbon categories which are modeled on representations of unrolled quantum groups, and which can be thought of as a non-semisimple analogue to modular categories. Our approach exploits a 2-categorical version of the universal construction introduced by Blanchet, Habegger, Masbaum, and Vogel. The 1+1+1-EQFTs thus obtained are realized by symmetric monoidal 2-functors which are defined over non-rigid 2-categories of admissible cobordisms decorated with colored ribbon graphs and cohomology classes, and which take values in 2-categories of complete graded linear categories. In particular, our construction extends the family of graded 2+1-TQFTs defined for the unrolled version of quantum s l 2 \mathfrak {sl}_2 by Blanchet, Costantino, Geer, and Patureau to a new family of graded ETQFTs. The non-semisimplicity of the theory is witnessed by the presence of non-semisimple graded linear categories associated with critical 1-manifolds.
Read full abstract