Stroke volume response during stress is a major determinant of functional status in heart failure and can be measured by two-dimensional (2-D) volumetric stress echocardiography (SE). The present study hypothesis is that SE may identify mechanisms underlying the change in stroke volume by measuring preload reserve through end-diastolic volume (EDV) and left ventricular contractile reserve (LVCR) with systolic blood pressure and end-systolic volume (ESV). We enrolled 4735 patients (age 63.6±11.3 years, 2800 male) referred to SE for known or suspected coronary artery disease (CAD) and/or heart failure (HF) in 21 SE laboratories in 8 countries. In addition to regional wall motion abnormalities (RWMA), force was measured at rest and peak stress as the ratio of systolic blood pressure by cuff sphygmomanometer/ESV by 2D with Simpson's or linear method. Abnormal values of LVCR (peak/rest) based on force were ≤1.10 for dipyridamole (N.=1992 patients) and adenosine (N.=18); ≤2.0 for exercise (N.=2087) or dobutamine (N.=638). Force-based LVCR was obtained in all 4735 patients. Lack of stroke volume increase during stress was due to either abnormal LVCR and/or blunted preload reserve, and 57% of patients with abnormal LVCR nevertheless showed increase in stroke volume. Volumetric SE is highly feasible with all stresses, and more frequently impaired in presence of ischemic RWMA, absence of viability and reduced coronary flow velocity reserve. It identifies an altered stroke volume response due to reduced preload and/or contractile reserve.
Read full abstract