Visual recognition is largely realized through neurons in the ventral stream, though recently, studies have suggested that ventrolateral prefrontal cortex (vlPFC) is also important for visual processing. While it is hypothesized that sensory and cognitive processes are integrated in vlPFC neurons, it is not clear how this mechanism benefits vision, or even if vlPFC neurons have properties essential for computations in visual cortex implemented via recurrence. Here, we investigated if vlPFC neurons in two male monkeys had functions comparable to visual cortex, including receptive fields, image selectivity, and the capacity to synthesize highly activating stimuli using generative networks. We found a subset of vlPFC sites show all properties, suggesting subpopulations of vlPFC neurons encode statistics about the world. Further, these vlPFC sites may be anatomically clustered, consistent with fMRI-identified functional organization. Our findings suggest that stable visual encoding in vlPFC may be a necessary condition for local and brain-wide computations.
Read full abstract