Stereotactic radiosurgery (SRS) treats severe, medically refractory essential tremor and tremor-dominant Parkinson disease. However, the optimal target for SRS treatment within the thalamic ventral intermediate nucleus (VIM) is not clearly defined. This work evaluates the precision of the physician-selected VIM target, and determines the optimal SRS target within the VIM by correlation between early responders and nonresponders. Early responders and nonresponders were assessed retrospectively by Elements Basal Ganglia Atlas autocontouring of the VIM on the pre-SRS-treatment 1-mm slice thickness T1-weighted MRI and correlating the center of the post-SRS-treatment lesion. Using pre- and posttreatment diffusion tensor imaging, the fiber tracking package in the Elements software generated tremor-related tracts from autosegmented motor cortex, thalamus, red nucleus, and dentate nucleus. Autocontouring of the VIM was successful for all patients. Among 23 patients, physician-directed SRS targets had a medial-lateral target range from +2.5 mm to -2.0 mm from the VIM center. Relative to the VIM center, the SRS isocenter target was 0.7-0.9 mm lateral for 6 early responders and 0.9-1.1 mm medial for 4 nonresponders (p = 0.019), and without differences in the other dimensions: 0.2 mm posterior and 0.6 mm superior. Dose-volume histogram analyses for the VIM had no significant differences between responders and nonresponders between 20 Gy and 140 Gy, mean or maximum dose, and dose to small volumes. Tractography data was obtained for 4 patients. For tremor control in early responders, the Elements Basal Ganglia Atlas autocontour for the VIM provides the optimal SRS target location that is 0.7-0.9 mm lateral to the VIM center.