AbstractIn this study, a numerical simulation technique is employed to predicate the temperature distribution and velocity profile data of cold and hot nanofluids within a T-mixer was studied. The mixing of nanofluid flow with Al2O3 nanoparticles of 50 nm flows at Φ = 0.4 vol.% in a T-shaped mixer. The present numerical problem has been solved using the COMSOL Multiphysics version 5.4. Six angle of inclination was studied (θ = 15, 30, 45, 60, 75, and 90°) of the gate and evaluated its effects on the temperatures and velocity contour in the T-junction. The study's findings indicated that the presence of a gate in a stationary, non-rotating flow regime has a noteworthy impact on the stationary vortex flow. Also, the mixing occurs more quickly at angles of 45 or 60°. Mixing at a 30° or 90° angle took longer.
Read full abstract