A time-resolved tunable diode-laser (DL) induced fluorescence (TR-TDLIF) technique has been used to identify different populations of atoms (on different stages of transport) to determine their corresponding deposited energy and flux. The temporal dimension permits the splitting of the processes of sputtering during the discharge and particles transport in the post-discharge where atoms and flux velocity distribution functions (AVDF, FVDF) of each population were measured varying the discharge parameters (power, voltage, pressure, and distance from target). Tungsten (W) was chosen, being an interesting case in terms of sputtered atom transport, considering its weight which implies weak changes of directivity or energy transfer after collisions with the buffer gas. The high temporal and spectral resolutions of TR-TDLIF are the keys for the distinction of the atoms populations and the stage corresponding to the transition from the ballistic to diffusive regime of transport was observed for the first time and named quasi-diffusive regime. Thus, the ability to dissociate populations of atoms and to determine their deposited flux and energy may be of great interest to adjust film properties as desired for applications.
Read full abstract