The self-diffusion process in a dense liquid is influenced by collective particle movements. Extensive molecular dynamics simulations for liquid aluminium and rubidium evidence a crossover in the diffusion coefficient at about 1.4 times the melting temperature Tm, indicating a profound change in the diffusion mechanism. The corresponding velocity autocorrelation functions demonstrate a decrease of the cage effect with a gradual set in of a power-law decay, they celebrate long time tail. This behavior is caused by a competition of density fluctuations near the melting point with vortex-type particle patterns from transverse currents in the hot fluid. The investigation of the velocity autocorrelation function evidences a gradual transition in dynamics with rising temperature. The competition between these two collective particle movements, one hindering and one enhancing the diffusion process, leads to a non-Arrhenius-type behavior of the diffusion coefficient around 1.4Tm, which signals the transition from a dense to a fluidlike liquid dynamics in the potential energy landscape picture. Published by the American Physical Society 2025
Read full abstract