Every year, about 1.19 million people are killed in traffic accidents; hence, the United Nations has a goal of halving the number of road traffic deaths and injuries by 2030. In line with this objective, technological innovations in telecommunication, particularly brought about by the rise of 5G networks, have contributed to the development of modern Vehicle-to-Everything (V2X) systems for communication. A New Radio V2X (NR-V2X) was introduced in the latest Third Generation Partnership Project (3GPP) releases which allows user devices to exchange information without relying on roadside infrastructures. This, together with Massive Machine Type Communication (mMTC) and Ultra-Reliable Low Latency Communication (URLLC), has led to the significantly increased reliability, coverage, and efficiency of vehicular communication networks. The use of artificial intelligence (AI), especially K-means clustering, has been very promising in terms of supporting efficient data exchange in vehicular ad hoc networks (VANETs). K-means is an unsupervised machine learning (ML) technique that groups vehicles located near each other geographically so that they can communicate with one another directly within these clusters while also allowing for inter-cluster communication via cluster heads. This paper proposes a multi-layered VANET-enabled Intelligent Transportation System (ITS) framework powered by unsupervised learning to optimize communication efficiency, scalability, and reliability. By leveraging AI in VANET solutions, the proposed framework aims to address road safety challenges and contribute to global efforts to meet the United Nations' 2030 target. Additionally, this framework's robust communication and data processing capabilities can be extended to eHealth monitoring systems, enabling real-time health data transmission and processing for continuous patient monitoring and timely medical interventions. This paper's contributions include exploring AI-driven approaches for enhanced data interaction, improved safety in VANET-based ITS environments, and potential applications in eHealth monitoring.