Communications between the Internet of Vehicles in smart cities helps increase the awareness and safety among drivers. However, the channel congestion problem is considered as a key challenge for the communication networks due to continuing collection and exchange of traffic information in dense environments. The channel congestion problem degrades the efficiency and reliability of the ad hoc network. Therefore, the adaptation of the data rate and power control is considered as one of the effective solutions to mitigate channel congestion. This paper develops a new hybrid game transmission rate and power channel congestion control approach on the Internet of Vehicle networks where the nodes play as greedy opponents demanding high information rates with the maximum power level. Furthermore, the existence of a Nash equilibrium, which is the optimal information rate and power transmission for every vehicle, is established. Simulation results demonstrate that the proposed approach enhances the network performance by an overall percentage of 42.27%, 43.94% and 47.66% regarding of channel busy time, messages loss and data collision as compared to others. This increases the awareness and performance of the vehicular communication network.
Read full abstract