Background: The architecture of Software Defined Networking (SDN) integrated with Vehicular Ad-hoc Networks (VANETs) is considered a practical method for handling large-scale, dynamic, heterogeneous vehicular networks, since it offers flexibility, programmability, scalability, and a global understanding. However, the integration with VANETs introduces additional security vulnerabilities due to the deployment of a logically centralized control mechanism. These security attacks are classified as internal and external based on the nature of the attacker. The method adopted in this work facilitated the detection of internal position falsification attacks. Objective: This study aimed to investigate the performance of k-NN, SVM, Naïve Bayes, Logistic Regression, and Random Forest machine learning (ML) algorithms in detecting position falsification attacks using the Vehicular Reference Misbehavior (VeReMi) dataset. It also aimed to conduct a comparative analysis of two ensemble classification models, namely voting and stacking for final decision-making. These ensemble classification methods used the ML algorithms cooperatively to achieve improved classification. Methods: The simulations and evaluations were conducted using the Python programming language. VeReMi dataset was selected since it was an application-specific dataset for VANETs environment. Performance evaluation metrics, such as accuracy, precision, recall, F-measure, and prediction time were also used in the comparative studies. Results: This experimental study showed that Random Forest ML algorithm provided the best performance in detecting attacks among the ML algorithms. Voting and stacking were both used to enhance classification accuracy and reduce time required to identify an attack through predictions generated by k-NN, SVM, Naïve Bayes, Logistic Regression, and Random Forest classifiers. Conclusion: In terms of attack detection accuracy, both methods (voting and stacking) achieved the same level of accuracy as Random Forest. However, the detection of attack using stacking could be achieved in roughly less than half the time required by voting ensemble. Keywords: Machine learning methods, Majority voting ensemble, SDN-based VANETs, Security attacks, Stacking ensemble classifiers, VANETs,
Read full abstract