In megacities, road traffic is a major source of particulate matter (PM), requiring a critical understanding of effective air pollution control. Despite existing methods to determine PM emission factors (EFs) of vehicles, accurate estimation of PM emissions under real driving conditions remains challenging. We aimed to assess the EFs of organic aerosol (OA) and equivalent black carbon (eBC) from vehicles through on-road measurements in Seoul, Korea, to understand real-world PM emissions. We used a mobile laboratory equipped with an aerosol mass spectrometer and an aethalometer to measure the composition of PM. On-road measurements were conducted in vehicle tunnels, urban roadways, and residential areas, and the characteristics of measurement points were compared and analyzed. Our results showed that concentrations of OA increased proportionally with the influence of vehicle exhaust, while oxidation states of the OA decreased. Mobile measurements revealed spatial heterogeneities in aerosols, highlighting distinct characteristics of fresh OA on vehicle roads and elevated oxidation state values in residential areas. Active nitrate formation near vehicles led to elevated NO3 concentrations on roads compared to residential areas. Our study shows that mobile PM measurements, including OA and eBC, are valuable for the direct evaluation of emission inventories. However, given that the calculated EFs may not be applicable to other cities due to differences in vehicle composition and traffic conditions, the development of city-specific EFs will be necessary in the future. Furthermore, it is recommended to integrate this methodology with conventional emission inventories to identify vehicle-type-specific emissions.Graphical