Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.
Read full abstract