AbstractThis article proposes a novel battery management system (BMS) to ensure uninterruptible power delivery to a 48 V DC bus used for electric vehicle charging stations, data centers, telecommunication systems, and critical care units such as hospitals. The proposed BMS facilitates constant current and constant voltage charging to maintain optimal battery performance during normal operation. This BMS is designed for effective control, monitoring and protection of two lead‐acid battery units to form battery energy storage system (BESS). Furthermore, it is capable of isolating batteries in abnormal conditions and operates them independently to provide reliable supply at output terminals with full capacity. The system utilizes a 30 V DC source derived from AC mains or solar photovoltaic system. This supply is used to charge the BESS and also supply to the load. In the event of failure of 30 V supply, it seamlessly transits to BESS mode to supply power to boost converter to maintain constant 48 V DC output at load terminal. The proposed system architecture not only enhances power reliability but also improves overall system efficiency, making it well‐suited for critical applications require continuous and stable power supply. Simulation studies using Matlab/Simulink and analytical results using TINA (Tool kit for Interactive Network Analysis) are presented to show that 48 V DC supply is maintained at output terminals during failure of input 30 V DC source or failure of one battery unit.