Dryland ecosystems are highly sensitive to climate change, making vegetation monitoring crucial for understanding ecological dynamics in these regions. In recent years, climate change, combined with large-scale ecological restoration efforts, has led significant greening in China’s arid areas. However, the mechanisms through which seasonal climate variations regulate vegetation growth are not yet fully understood. This study hypothesizes that seasonal climate change affects net primary productivity (NPP) of vegetation by influencing phenology. We focused on China’s Windbreak and Sand-Fixation Ecological Function Conservation Areas (WSEFCAs) as representative regions of dryland vegetation. The Carnegie–Ames–Stanford Approach (CASA) model was used to estimate vegetation NPP from 2000 to 2020. To extract phenological information, NDVI data were processed using Savitzky–Golay (S–G) filtering and threshold methods to determine the start of season (SOS) and end of season (EOS). The structural equation model (SEM) was constructed to quantitatively assess the contributions of climate change (temperature and precipitation) and phenology to variations in vegetation NPP, identifying the pathways of influence. The results indicate that the average annual NPP in WSEFCAs increased from 55.55 gC/(m2·a) to 75.01 gC/(m2·a), exhibiting uneven spatial distribution. The pathways through which seasonal climate affects vegetation NPP are more complex and uneven. Summer precipitation directly promoted NPP growth (direct effect = 0.243, p < 0.001) while also indirectly enhancing NPP by significantly advancing SOS (0.433, p < 0.001) and delaying EOS (−0.271, p < 0.001), with an indirect effect of 0.133. This finding highlights the critical role of phenology in vegetation growth, particularly in regions with substantial seasonal climate fluctuations. Although the overall ecological environment of WSEFCAs has improved, significant regional disparities remain, especially in northwestern China. This study introduces causal mediation analysis to systematically explore the mechanisms through which seasonal climate change impacts vegetation NPP in WSEFCAs, providing new insights into the broader implications of climate change and offering scientific support for ecological restoration and management strategies in arid regions.
Read full abstract