This field study assessed the occurrence, event mean concentrations (EMCs), and removal of selected organic micro-pollutants (OMPs), namely, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), nonylphenol (NP), 4-t-octylphenol (OP), and bisphenol A (BPA), in a gross pollutant trap (GPT)-biofilter/sand filter stormwater treatment train in Sundsvall, Sweden. The effects of design features of each treatment unit, including pre-sedimentation (GPT), sand filter medium, vegetation, and chalk amendment, were investigated by comparing the units' removal performances. Overall, the treatment train removed most OMPs from highway runoff effectively. The results showed that although the sand filter provided moderate (<50 % for phenolic substances) to high (50–80 % for PAHs and PHCs) removal of OMPs, adding a vegetated soil layer on top of the sand filter considerably improved the removal performance (by at least 30 %), especially for BPA, OP, and suspended solids. Moreover, GTP did not contribute to the treatment significantly. Uncertainties in the removal efficiencies of PAHs and PHCs by the filter cells increased substantially when the ratio of the influent concentration to the limit of quantification decreased. Thus, accounting for such uncertainties due to the low OMP concentrations should be considered when evaluating the removal performance of biofilters.