Vegetation plays a vital role in terrestrial ecosystems, and droughts driven by rising temperatures pose significant threats to vegetation health. This study investigates the evolution of vegetation drought from 2010 to 2024 and introduces a deep-learning-based forecasting model for analyzing regional spatial and temporal variations in drought. Extensive time-series remote-sensing data were utilized, and we integrated the Temperature–Vegetation Dryness Index (TVDI), Drought Severity Index (DSI), Evaporation Stress Index (ESI), and the Temperature–Vegetation–Precipitation Dryness Index (TVPDI) to develop a comprehensive methodology for extracting regional vegetation drought characteristics. To mitigate the effects of regional drought non-stationarity on predictive accuracy, we propose a coupling-enhancement strategy that combines the Whale Optimization Algorithm (WOA) with the Informer model, enabling more precise forecasting of long-term regional drought variations. Unlike conventional deep-learning models, this approach introduces rapid convergence and global search capabilities, utilizing a sparse self-attention mechanism that improves performance while reducing model complexity. The results demonstrate that: (1) compared to the traditional Transformer model, test accuracy is improved by 43%; (2) the WOA–Informer model efficiently handles multi-objective forecasting for extended time series, achieving MAE (Mean Absolute Error) ≤ 0.05, MSE (Mean Squared Error) ≤ 0.001, MSPE (Mean Squared Percentage Error) ≤ 0.01, and MAPE (Mean Absolute Percentage Error) ≤ 5%. This research provides advanced predictive tools and precise model support for long-term vegetation restoration efforts.