The Shendong Mining Area, being the largest coal base in the world, has significant challenges in the intensive development and utilization of coal resources, as well as the impact of a dry climate, which can have serious negative effects on the growth of flora in the region. Investigating the spatial and temporal patterns of how meteorological drought affects vegetation in the Shendong Mining Area at various time scales can offer a scientific foundation for promoting sustainable development and ecological restoration in the region. This study utilizes the Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI) data from 1986 to 2020 in the Shendong Mining Area. It employs Slope trend analysis, a Mann–Kendall test, a Geographic Detector, and other methods to examine the spatiotemporal distribution characteristics of meteorological drought at various time scales. Additionally, the study investigates the influence of these drought patterns on vegetation growth in the Shendong Mining Area. Across the mining area, there was a general decrease in the monthly average SPEI on an annual basis. However, on a seasonal, semi-annual, and annual basis, there was a gradual increase in the annual average SPEI, with a higher rate of increase in the southern region compared to the northern region. When considering the spatial variation trend in different seasons, both positive and negative trends were observed in winter and summer. The negative trend was mainly observed in the western part of the mining area, while the positive trend was observed in the eastern part. In spring, the mining area generally experienced drought, while in autumn, it generally experienced more precipitation. The mining area exhibits a prevailing distribution of vegetation, with a greater extent in the southeast and a lesser extent in the northwest. The vegetation coverage near the mine is insufficient, resulting in a low NDVI value, which makes the area prone to drought. Over the past few years, the mining area has experienced a significant increase in vegetation coverage, indicating successful ecological restoration efforts. Various forms of land use exhibit distinct responses to drought, with forests displaying the most positive correlation and barren land displaying the strongest negative correlation. Various types of landforms exhibit varying responses to drought. Loess ridge and hill landforms demonstrate the most pronounced positive association with monthly-scale SPEI values, whereas alluvial and floodplain landforms display the poorest positive correlation with yearly scale SPEI values. The general findings of this research can be summarized as follows: (1) The mining area exhibits a general pattern of increased humidity, with the pace of humidity increase having intensified in recent times. Seasonal variations exhibit consistent cyclic patterns. (2) There are distinct regional disparities in NDVI values, with a notable peak in the southeast and a decline in the northwest. The majority of the mining area exhibits a positive trend in vegetation recovery. (3) Regional meteorological drought is a significant element that influences changes in vegetation coverage in the Shendong Mining Area. Nevertheless, it displays complexity and is more obviously impacted by other factors at a small scale. (4) It should be noted that forests and barren land exert a more significant influence on SPEI values, despite their relatively lesser spatial coverage. The predominant land use type in most locations is grasslands; however, they have a relatively minor influence on SPEI. (5) A shorter time period, higher elevation, and steeper slope gradient all contribute to a larger correlation with drought.
Read full abstract