Biomass is a vital index used to evaluate the vegetation rebuilding effect of mining slopes after restoration. It is essential to establish models for estimating the biomass and carbon storage of the vegetation community on mining slopes. Therefore, this paper establishes models for the biomass and carbon storage of such vegetation, taking an abandoned quarry after ecological restoration in Yixing City, Jiangsu Province, as the research object. Firstly, the variables of the biomass estimation models were determined based on the correlation analysis results; the vegetation biomass model was comprehensively selected, and the accuracy of the optimal models was verified. Meanwhile, the carbon storage calculation model was established in combination with the carbon content and the growth pattern of vegetation. The results showed that (1) the optimal models were the cubic and linear functions, respectively, for the shrubs and herbs, while the relevant variables of the shrub and the herb plants were the average height multiplied by the diameter of each shrub plant (DH) and the average height multiplied by the coverage rate (CH), respectively, with the verification results of R2 > 0.814, RS > 2.8%, and RMA > 6%; and (2) in the restored mining slopes, the vegetation biomass was 120.264 t, including 10.586 t of herbs and 109.678 t of shrubs, and the vegetation carbon storage was 50.585 t, including 3.705 t of herbs and 46.880 t of shrubs. The proposed models have good prediction accuracy and reliability after quantitative evaluation and can be applied to the biomass estimation and carbon storage calculation of restored mining slopes, providing a reference for the environmental sustainability of post-mining areas and other ecologically restored slopes.
Read full abstract