Soybean (Glycine max L.) is the main source of vegetable protein and edible oil for humans, with an average content of about 40% crude protein and 20% crude fat. Soybean yield and quality traits are mostly quantitative traits controlled by multiple genes. The quantitative trait loci (QTL) mapping for yield and quality traits, as well as for the identification of mining-related candidate genes, is of great significance for the molecular breeding and understanding the genetic mechanism. In this study, 186 individual plants of the F2 generation derived from crosses between Changjiangchun 2 and Yushuxian 2 were selected as the mapping population to construct a molecular genetic linkage map. A genetic map containing 445 SSR markers with an average distance of 5.3 cM and a total length of 2375.6 cM was obtained. Based on constructed genetic map, 11 traits including hundred-seed weight (HSW), seed length (SL), seed width (SW), seed length-to-width ratio (SLW), oil content (OIL), protein content (PRO), oleic acid (OA), linoleic acid (LA), linolenic acid (LNA), palmitic acid (PA), stearic acid (SA) of yield and quality were detected by the multiple- d size traits and 113 QTLs related to quality were detected by the multiple QTL model (MQM) mapping method across generations F2, F2:3, F2:4, and F2:5. A total of 71 QTLs related to seed size traits and 113 QTLs related to quality traits were obtained in four generations. With those QTLs, 19 clusters for seed size traits and 20 QTL clusters for quality traits were summarized. Two promising clusters, one related to seed size traits and the other to quality traits, have been identified. The cluster associated with seed size traits spans from position 27876712 to 29009783 on Chromosome 16, while the cluster linked to quality traits spans from position 12575403 to 13875138 on Chromosome 6. Within these intervals, a reference genome of William82 was used for gene searching. A total of 36 candidate genes that may be involved in the regulation of soybean seed size and quality were screened by gene functional annotation and GO enrichment analysis. The results will lay the theoretical and technical foundation for molecularly assisted breeding in soybean.