A new rust resistance gene Ruv2 was fine-mapped in cowpea to a 193-kb region on chromosome 2, which harboured 23 predicted gene models enriched with NBS-type genes. ZN016 is a landrace vegetable cowpea highly resistant to rust. Two previous studies using mixed-spores inoculation suggested different modes of inheritance of rust resistance in ZN016. In this study, we initially developed a detached leaf assay with a purified single-rust isolate (Auv-LS). Using this approach, we assessed the inheritance of rust resistance in a recombinant inbred line (RIL) population and an F2 population, both derived from the cross of "ZN016" and the susceptible cultivar "Zhijiang282." A single dominant gene mode against Auv-LS was revealed in both populations. QTL mapping showed that this gene was coincident with the Ruv2 locus on LG7, one of the three resistance QTLs previously mapped based on mixed-spores inoculation data. Therefore, Ruv2 was considered as specifically against the rust isolate Auv-LS. Through an analysis of the RIL recombinants at Ruv2, we fine-mapped the gene to an ~ 0.45-cM interval between SNP markers 2_09656 and 2_00973, which corresponded to an ~ 193-kb region on chromosome 2 that harboured 23 predicted gene models enriched with NBS-type genes. Re-sequencing of the two parents revealed polymorphisms in four genes predictively to cause substantial protein structural changes, rendering them valuable candidate genes for future validation. Cross-species syntenic analysis indicated that Ruv2 may represent a novel rust resistance gene in food legumes. A cleaved amplified polymorphic sequences marker tightly linked to Ruv2 was developed to facilitate breeding. This work establishes a basis for map-based cloning of Ruv2 and breeding for rust resistance in cowpea and other legume crops.