Bergman space theory has been at the core of complex analysis research for many years. Indeed, Hardy spaces are related to Bergman spaces. The popularity of Bergman spaces increased when functional analysis emerged. Although many researchers investigated the Bergman space theory by mimicking the Hardy space theory, it appeared that, unlike their cousins, Bergman spaces were more complex in different aspects. The issue of invariant subspace constitutes one common problem in mathematics that is yet to be resolved. For Hardy spaces, each invariant subspace for shift operators features an elegant description. However, the method for formulating particular structures for the large invariant subspace of shift operators upon Bergman spaces is still unknown. This paper aims to characterize bounded Hankel operators involving a vector-valued Bergman space compared to other different vector value Bergman spaces.
Read full abstract