In vivo gene therapy has several benefits over ex vivo hematopoietic stem cell gene therapy, including the correction of progenitor cells in their native environments, the portability of the treatment to the patient, and the ability to administer serial doses of therapeutic vector. Foamy viruses (FV) are ideal vectors for in vivo gene therapy for 3 primary reasons: (1) FV are non-pathogenic in humans, (2) they exhibit enhanced serum stability as compared to lentiviruses packaged with the vesicular stomatitis virus glycoprotein (VSV-G), and (3) FV integrate into host genomes with a favorable integration pattern. We recently demonstrated that intravenous injection of a FV vector expressing the human common gamma chain (γC) under the constitutively active short elongation factor 1α (EF1α) promoter is sufficient to drive development of CD3+ lymphocytes in canine X-SCID, which undergo T cell receptor rearrangement and exhibit a functional signaling response to T cell activating mitogens (Burtner CR, Beard BC, Kennedy DR, et al. Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood. 2014;123(23):3578-84). However, retroviral integration site analysis in that study indicated that T cell reconstitution occurred through the correction of a limited number of progenitors, possibly due to sub-therapeutic expression levels from the EF1α promoter. To address this issue, we are evaluating multiple parameters of vector design for in vivo gene therapy, including different promoters, using injections of vectors marked with different fluorophores.Preliminary data indicated that ex vivo transduction of canine CD34+ cells with a FV vector expressing human γC and a fluorescent reporter under the human phosphoglycerate kinase (PGK) promoter resulted in higher transduction efficiencies and increased mean fluorescence intensity, compared to that of an identical vector containing the EF1α promoter. We therefore performed a head-to-head comparison of the two promoters by simultaneously injecting X-SCID pups with equal titers of 2 therapeutic, human γC-encoding FV vectors that differed only in the promoter used to drive human γC expression and in the fluorophore color to distinguish gene-marked cells (GFP and mCherry). Each dog received 4 x 108 infectious units of each FV vector. A significant population of gene-marked lymphocytes appeared in the PGK arm 42 days post in vivo gene therapy, which continued to expand over the next two months of follow-up (Fig 1A). By 84 days post injection, lymphocyte gene marking in the competitive PGK arm reached 60% in both dogs. For comparison, this robust level of lymphocyte gene marking was achieved in only 2 of 5 dogs after 122 and 160 days, respectively, in our previous EF1α virus treated cohort. In contrast, the EF1α arm peaked at 42 days after in vivo gene therapy and never expanded above 10% (Fig 1A). Interestingly, the expansion of T lymphocytes from gene-modified cells expressing γC under the PGK promoter appeared to preclude further development of T cells by the by the EF1α arm, suggesting competition within the expanding T cell niche. The expansion of gene-marked lymphocytes was followed by the development of CD3+ T cells, leading to a therapeutic level of CD3+ cells (1000 cells/μl of blood) in both dogs (Fig 1B). Additionally, our data indicate low but persistent gene marking in other blood cells, including granulocytes and B cells, with B cell marking in one animal exceeding 2% in the PGK arm. Our data suggest that the PGK promoter results in a robust and sustained correction of progenitor T cells in a relevant large-animal disease model for primary immunodeficiency. These data also highlight the utility of the in vivo approach to explore key parameters of vector design in competitive repopulation experiments that may be useful for other diseases. [Display omitted] DisclosuresNo relevant conflicts of interest to declare.
Read full abstract