Over the past few years, interest in applications related to recommendation systems has increased significantly. Many modern services create recommendation systems that, based on user profile information and his behavior. This services determine which objects or products may be interesting to users. Recommendation systems are a modern tool for understanding customer needs. The main methods of constructing recommendation systems are the content-based filtering method and the collaborative filtering method. This article presents the implementation of these methods based on decision trees. The content-based filtering method is based on the description of the object and the customer’s preference profile. An object description is a finite set of its descriptors, such as keywords, binary descriptors, etc., and a preference profile is a weighted vector of object descriptors in which scales reflect the importance of each descriptor to the client and its contribution to the final decision. This model selects items that are similar to the customer’s favorite items before. The second model, which implements the method of collaborative filtering, is based on information about the history of behavior of all customers on the resource: data on their purchases, assessments of product quality, reviews, marked product. The model finds clients that are similar in behavior and the recommendation is based on their assessments of this element. Voting was used to combine the results issued by individual models — the best result is chosen from the results of two models of the ensemble. This approach minimizes the impact of randomness and averages the errors of each model. The aim: The purpose of work is to create real competitive recommendation system for short period of time and minimum costs.