In recent years, the prediction of antimicrobial peptides (AMPs) has gained prominence due to their high antibacterial activity and reduced susceptibility to drug resistance, making them potential antibiotic substitutes. To advance the field of AMP recognition, an increasing number of natural language processing methods are being applied. These methods exhibit diversity in terms of pretraining models, pretraining data sets, word vector embeddings, feature encoding methods, and downstream classification models. Here, we provide a comprehensive survey of current BERT-based methods for AMP prediction. An independent benchmark test data set is constructed to evaluate the predictive capabilities of the surveyed tools. Furthermore, we compared the predictive performance of these computational methods based on six different AMP public databases. LM_pred (BFD) outperformed all other surveyed tools due to abundant pretraining data set and the unique vector embedding approach. To avoid the impact of varying training data sets used by different methods on prediction performance, we performed the 5-fold cross-validation experiments using the same data set, involving retraining. Additionally, to explore the applicability and generalization ability of the models, we constructed a short peptide data set and an external data set to test the retrained models. Although these prediction methods based on BERT can achieve good prediction performance, there is still room for improvement in recognition accuracy. With the continuous enhancement of protein language model, we proposed an AMP prediction method based on the ESM-2 pretrained model called iAMP-bert. Experimental results demonstrate that iAMP-bert outperforms other approaches. iAMP-bert is freely accessible to the public at http://iamp.aielab.cc/.