The two most commonly used induction motor control methods are the scalar ( $V/f$ ) and vector (field-oriented) control techniques. $V/f$ control has good steady-state response and robustness against the variation in machine parameters, but the resulting torque dynamics are poorer. Vector control achieves better dynamic performance by decoupling the flux- and torque-producing components of the stator current. Vector-controlled techniques are heavily dependent on the machine parameters and are sensitive to the variation in machine parameters. This paper proposes a novel control technique, which integrates the robustness features of scalar control and good dynamic performance of vector control. Estimation of the transient vector is responsible for improving dynamics in the proposed control. The proposed control technique uses an optimal controller with an output feedback law. The operation of the proposed control is validated experimentally under both steady-state and transient conditions. Finally, the proposed control is compared with both the $V/f$ and vector control strategies in terms of dynamic performance and parameter sensitivity.