The shift in the balance between the inhibition and the excitation in favor of the latter is a major mechanism of the evolvement of epileptic seizures. On the neurotransmitter level two major players contribute to such misbalance: an inhibitory transmitter gamma-aminobutyric acid, and an excitatory amino acid glutamate. Neuropeptides are powerful modulators of classical neurotransmitters, and thus represent an intriguing tool for restoring the balance between the inhibition and the excitation, through either blocking or activating peptide receptors depending on whether a peptide is pro- or anticonvulsant. Galanin, a 29-amino acid residues neuropeptide which inhibits glutamate release in the hippocampus, is a likely member of the anticonvulsant peptide family. During the past decade growing evidence has been suggesting that galanin is in fact a powerful inhibitor of seizure activity. This review summarizes the state of research of galanin in epilepsy, beginning with the first simple experiments which showed that central injection of galanin agonists inhibited seizures, and that seizures themselves affected galanin signaling in the hippocampus; exploring the impact of active manipulation with the expression of galanin and galanin receptors on seizures, using transgenic animals, antisense and peptide-expressing vector approaches; and concluding with the recent advances in pharmacology, which led to the synthesis of non-peptide galanin receptor agonists with anticonvulsant properties. We also address recently established functions of galanin in seizure-associated neuronal degeneration and neuronal plasticity.
Read full abstract