In coronary microembolization, inflammatory cell infiltration, patchy necrosis, and extensive intra-myocardial hemorrhage are dominant, which induce myocardial dysfunction with clinical symptoms of chronic ischemic cardiomyopathy. Microembolization can lead to obstruction of the coronary microvessels and result in the micro-infarction of the heart. The inflammation and elevated expression of the tumor necrosis factor in cardiomyocytes and the activation of extracellular ERK are involved in initiating the inflammatory response mechanism. The PI3K/Akt signaling pathway is the enriched pathway, and for controlling, inhibition of PI3K/Akt is necessary. Furthermore, the release of cytokines and the activation of inflammasomes contribute to the enhancement of vascular permeability, which results in edema within the myocardium. The immune response and inflammation represent the primary triggers in this process. The ability to control immune response and inflammation reactions may lead to the development of new therapies for microembolization.
Read full abstract