The use of in vitro-in vivo correlation (IVIVC) for extended release oral dosage forms is an important technique that can avoid potential clinical studies. IVIVC has been a topic of discussion over the past two decades since the inception of USFDA guidance. It has been routinely used for biowaivers, establishment of dissolution safe space and clinically relevant dissolution specifications, for supporting site transfers, scale-up and post approval changes. Although conventional or mathematical IVIVC is routinely used, other approach such as mechanistic IVIVC can be of attractive choice as it integrates all the physiological aspects. In the present study, we have performed comparative evaluation of mechanistic and conventional IVIVC for establishment of dissolution safe space using divalproex sodium and tofacitinib extended release formulations as case examples. Conventional IVIVC was established using Phoenix and mechanistic IVIVC was set up using Gastroplus physiologically based biopharmaceutics model (PBBM). Virtual dissolution profiles with varying release rates were constructed around target dissolution profile using Weibull function. After internal and external validation, the virtual dissolution profiles were integrated into mechanistic and conventional IVIVC and safe space was established by absolute error and T/R ratio's methods. The results suggest that mechanistic IVIVC yielded wider safe space as compared to conventional IVIVC. The results suggest that a mechanistic approach of establishing IVIVC may be a flexible approach as it integrates physiological aspects. These findings suggest that mechanistic IVIVC has wider potential as compared to conventional IVIVC to gain wider dissolution safe space and thus can avoid potential clinical studies.
Read full abstract